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Abstract. In different application areas, the prediction of values that are hierar-
chically related is required. As an example, consider predicting the revenue per
month and per year of a company where the prediction of the year should be equal
to the sum of the predictions of the months of that year. The idea of reconciliation
of prediction on grouped time-series has been previously proposed to provide op-
timal forecasts based on such data. This method in effect models the time-series
collectively rather than providing a separate model for time-series in each level.
While originally the idea of reconciliation is applicable on data of time-series na-
ture, it is not clear if such an approach can also be applicable to regression settings
where multi-attribute data is available. In this paper, we address such problem by
proposing Reconciliation for Regression (R4R), a two-step approach for predic-
tion and reconciliation. In order to evaluate this method, we test its applicability
in the context of Travel Time Prediction (TTP) of bus trips where two levels of
values need to be calculated: (i) travel times of the links between consecutive bus-
stops; and (ii) total trip travel time. The results show that R4R can improve the
overall results in terms of both link TTP performance and reconciliation between
the sum of the link TTPs and the total trip travel time. We compare the results
acquired when using group-based reconciliation methods and show that the pro-
posed reconciliation approach in a regression setting can provide better results in
some cases. This method can be generalized to other domains as well.
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1 Introduction

Regression analysis provides a simple framework for predicting numerical target at-
tributes from a set of independent predictive attributes. Addressing any problem using
this framework requires designing models that fully capture the relations between pre-
dictive and target attributes. This has so far led to many classes of regression models
being designed. For instance, multi-target regression models [11] consider predicting
the value of multiple target attributes as opposed to basic regression models that aim
at predicting only a single target attribute at a time. In another case, when one target
variable is being predicted from a set of hierarchically ordered predictive attributes the
problem is known to be multi-level regression [5].



2 João Mendes-Moreira and Mitra Baratchi

In this paper, we address the problem of regression for a class of problems where
dependent variables are additionally hierarchically organized following different levels
of aggregation. An example is the revenue forecasts per month and also per year of a
given company. The forecasts for the new year can be the sum of the predictions done
for each of the twelve months of the new year or can be done directly for the full new
year. However, in many situations, it is important that the sum of the prediction per
month is equal to the prediction for the full year. Moreover, relevant questions in this
regard can arise. Can we obtain better predictions using both predictions for all months
and for the full year? How may we reconcile the sum of the predictions done per month
with the prediction done for the full year? Authors of [8] answered these questions for
hierarchies of time series, i.e., a sequence of values, typically equally spaced, where
this sequence can be aggregated by a given dimension.

This notion of hierarchy can also exist in the regression setting i.e., a problem with
a set of n instances (Xi,yi), i = 1, ...,n. Each (Xi,yi) instance has a vector Xi with
p predictive attributes (xi1 , xi2 , ..., xip) and a quantitative target attribute yi. The hi-
erarchy can exist in this regression setting when, for instance, two of the p predictive
attributes have a 1-to-many relation as referred to in relational databases.

Addressing this problem in the regression setting leads to more flexible and ro-
bust solutions than the time series approach because we can deal with irregularly time-
spaced sequences and we can add additional predictive attributes than the attribute of
interest. In a typical time-series setting, each observation of the target attribute is equally
time spaced. This requirement makes this method sensitive to the prevalent problem of
data sparsity and missing data. In the regression setting, time is treated as a predictive
attribute. Consequently, any number of observations per time interval can be defined.
There are no limitations to the time interval between consecutive observations and it
does not need to be equal between observations. Moreover, any other type of predictive
attribute can be used to better explain the target attribute.

In this work, we present an approach to reconcile predictions in the regression set-
ting. We achieve this by proposing a new method named Reconciling for Regression
(R4R). The R4R method is tested for the bus travel time prediction problem. This prob-
lem considers that buses run in predefined routes and each route are composed of several
links. Each link is the road stretch between two consecutive bus stops. Reconciling the
predictions in this problem aims at reconciling the sum of the predictions done for each
link with the prediction done for the full route. According to the authors’ knowledge,
this is the first work on reconciling predictions in the regression setting. This work is
also different from multi-target and multi-level variants being a combination of both
(having multiple targets that are hierarchically ordered).

The R4R method can be applied to any other regression problem which exhibits a
one-to-many relationship between instances and the aggregated target value (the one)
is the sum of the detailed target values (the many). In the previous examples: (1) the
revenue forecasts for the new year, the many component are the revenue forecasts per
month, and the one component is the revenue forecast for the full year; (2) in the bus
travel time example, the many components are the link predictions while the one com-
ponent is the full route prediction. In this paper, we only discuss the sum as aggregation
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criterion (the one should be equal to the sum of the many) but the proposed method
could be easily extended to other aggregation criteria, e.g., the average.

The remainder of this paper is organized as follows. In Section 2 we present the pre-
vious work on reconciling predictions. Section 3 elaborates the proposed methodology.
In Section 4, we describe the case study. The results of the case study are presented and
discussed in Section 5. In Section 6, we discuss an additional extension to the proposed
method where the reconciliation is done whenever the bus arrives at a stop. Finally, the
conclusion and future research directions are presented in Section 7.

2 Literature Review

In this section, we review the previous research both considering (i) the methods for
forecasting for hierarchically organized time-series data and (ii) application area of
travel time prediction.

Methods for forecasting hierarchically organized data: Common methods used
to reconcile predictions for hierarchically organized time-series data can be further
grouped into three categories: bottom-up, top-down and middle-out, based on the level
which is predicted first. Bottom-up strategies forecast all the low-level target attributes
and use the sum of these predictions as the forecast for the higher-level attribute. On
the contrary, top-down approaches predict the top-level attribute and then splits up the
predictions for the lower level attributes based on historical proportions that may be
estimated. For time-series data with more than two levels of hierarchy, a middle-out
approach can be used combining both bottom-up and top-down approaches [3]. These
methods form linear mappings from the initial predictions to reconciled estimates. As
a consequence, the sum of the forecasts of the components of a hierarchical time series
is equal to the forecast of the whole. However, this is achieved without guaranteeing
an optimal solution. Authors of [8] presented a new framework for optimally reconcil-
ing forecasts of all series in a hierarchy to ensure they add up. The method first com-
putes independently the forecast for each level of the hierarchy. Afterward, the method
provides a means for optimally reconciling the base forecasts so that they aggregate
appropriately across the hierarchy. The optimal reconciliation is based on a general-
ized least squares estimator and requires an estimation of the covariance matrix of the
reconciliation errors. Using Australian domestic tourism data, authors of [8] compare
their optimal method with bottom-up and conventional top-down forecast approaches.
Results show that optimal combinational approach and the bottom-up approach outper-
form the top-down method.

The same authors extended, in [9], the previous work proposed in [8] to cover non-
hierarchical groups of time series, as well as, large groups of time series data with a
partial hierarchical structure. A new combinational forecasting approaches is proposed
that incorporates the information from a full covariance matrix of forecast errors in
obtaining a set of aggregate forecasts. They use a weighted least squares method due to
the difficulty of estimating the covariance matrix for large hierarchies.

In [16], an alternative representation which involves inverting only a single matrix
of a lower number of dimensions is used. The new combinational forecasting approach
incorporates the information from a full covariance matrix of forecast errors in obtain-
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ing a set of aggregate consistent forecasts. The approach minimizes the mean squared
error of the aggregate consistent forecasts across the entire collection of time series.

A game-theoretically optimal reconciliation method is proposed in [6]. The authors
address the problem in two independent steps, by first computing the best possible fore-
casts for the time series without taking into account the hierarchical structure and next
to a game-theoretic reconciliation procedure to make the forecasts aggregate consistent.

The previously mentioned methods are limited by the nature of the time-series ap-
proach they take. It is often impossible to take any advantage of additional features and
attributes accompanying data with such an approach. Furthermore, may prevalent data
imperfection problems such as missing data, lead to imperfect time-series. This fact
reduces the applicability of time-series models that require equally distanced samples.

In our work, we take advantage of additional features and the structure of the
grouped data to improve and reconcile predictions. Instead of forecasting each time
series independently and then combine the predictions, in a regression setting, we can
reconcile future events using only some past events. This leads to a solution suitable for
online applications.

Application area of travel time prediction: There exists an important amount of
research papers that address the problem of travel time prediction for transport appli-
cations. Accurate travel time information is essential as it attracts more commuters and
increases commuter’s satisfaction [1].

The majority of these works are on short-term travel time prediction [19], which is
meant for advanced traveler information systems. There are also works on long-term
travel time prediction [13], which can be used as a planning tool for public transport
companies or even for freight transports.

Link travel time prediction can be used for route guidance [17], for bus bunching
detection [14], or to predict the bus arrival time at the next station [18] which can
promote information services about it. More recently Global Positioning System (GPS)
data is becoming more and more available allowing its use to predict travel times from
GPS trajectories. These trajectories can be used to construct origin-destination matrices
of travel times or traffic flows, an important tool for mobility purposes [2].

Using both link travel time predictions and the full trip travel time prediction in or-
der to improve all those predictions is a contribution of this paper for the transportation
field.

3 The R4R Method

3.1 Problem definition:

Consider a dataset D = 〈X,L, r〉. Note that X in this tuple represents the set of pre-
dictive attributes and is a matrix of size N × Q representing a set of N number of
instances represented by Q number of predictive attributes. Furthermore, L is the set of
many component targets and is a matrix of size N ×K with K being the number of
elements of the many component target. r is the set of one component target and is
a vector of length N . Elements of {rn ∈ r} represent target attributes of the one com-
ponent and each {ln,k ∈ L} is the kth target attribute of the many component. Also,
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consider rn =
∑K
k=1 ln,k denoting the sum of all the many component targets being

equal to a corresponding one component target.
Defining the prediction of each ln,k as pn,k, we are looking for a model that ensures

that the sum of the predictions of the many component target are as close as possible
to the rn. In other words, after making predictions we want the following equation to
hold:

{
K∑
k=1

pn,k ≈ rn|n ≤ N} (1)

3.2 Methodology

In this section, we elaborate on our proposed method, Reconciling for Regression (R4R)
to address the above-mentioned problem. R4R method is composed of two steps. In the
first step, it learns models for prediction of the many component targets, separately.
In the second step, it reconciles the many predictions with the one component.

In order to improve the individual pn,k predictions such that eq. 1 holds, our pro-
posed framework uses a modified version of the least squares optimization method to
compute a set of corrective coefficients (see eq. 4), that are used to update the individual
pn,k predictions.

Step 1, Learning the predictive models: at the first step, the predictions of the
many target component are calculated using a specific base learning method. K differ-
ent models are trained, one for each of theK elements of the many target component. It
is possible to select a different learning method for each element, to ensure higher accu-
racy. The resulting predictions for each of theK elements are referred to as pm,k, where
m is the instance number and k identifies elements of the many components. Algorithm
1 depicts these steps. As a result, this algorithm creates an output P, a matrix of size
M ×K composed of predictions pm,k. P is used in the second stage for reconciliation.

Algorithm 1 Learning the predictive model

Input: D (dataset matrix of size N × (Q + K)), Me (base learning method),γ (a percentage
value)

Output: P (Predictions matrix of size M ×K)
1: Split Dataset D into Train set of size (1− γ)N and Test set of size M = γ ×N ;
2: for k = 1 to K do
3: Train modelk using Me to predict the kth element of the many component target;
4: for m = 1 to M do
5: pm,k := Predict the value of mth instance of kth target in Test using modelk; / / pm,k

denotes elements of P
6: end for
7: end for
8: return P;

Step 2, Reconciling predictions: In the second step, the framework updates the
value of predictions resulted from the initial models used in Algorithm 1. This is achieved
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by estimating corrective coefficients (θk) for each element of the many target compo-
nent (pm,k). This coefficient needs to be multiplied with the model predictions to ensure
minimized error from the actual one component target (rm) and many component target
(lm,k). We achieve this goal using a least squares method on the current training dataset
and using the objective functions given by eq. 2 and 3 to estimate θ = (θ1, ..., θK).

argmin
lb<θ<ub

(

K∑
k=1

(θkpm,k)− rm)2,m ≤M (2)

argmin
lb<θ<ub

K∑
k=1

(θkpm,k − lm,k)2,m ≤M (3)

The first objective function presented in Eq. 2 is attempting to optimize reconcili-
ation based on the value of one component target. The second objective function pre-
sented in Eq. 3 aims at minimizing the error of the predictions based on the value of
each element of the many component targets, separately. Both of these objective func-
tions can be combined and expanded to Eq. 4. In eq. 4, the firstM rows are representing
the objective function presented in Eq. 2. The remaining M × (KM) rows represent
the second objective function as provided in Eq. 3.



p1,1 p1,2 · · · p1,k · · · p1,K
p2,1 p2,2 · · · p2,k · · · p2,K

...
...

. . .
...

...
...

...
...

. . .
...

pm,1 pm,2 · · · pm,k · · · pm,K

p1,1 0 · · · 0 · · · 0
0 p1,2 · · · 0 · · · 0

...
...

. . .
...

. . .
...

0 0 · · · p1,k · · · 0

...
...

. . .
...

. . .
...

0 0 · · · 0 · · · p1,K
...

...
. . .

...
. . .

...
pm,1 0 · · · 0 · · · 0
0 pm,2 · · · 0 · · · 0

...
...

. . .
...

. . .
...

0 0 · · · pm,k · · · 0

...
...

. . .
...

. . .
...

0 0 · · · 0 · · · pm,K





θ1
θ2
...
θk
...
θK


=



r1
r2
...
...
rm
l1,1
l1,2

...
l1,k

...
l1,K

...
lm,1

lm,2

...
lm,k

...
lm,K



(4)

As seen in eq. 2 and eq. 3 we have defined a constraint on the values of θ. The aim
is to regularize the modifications to the predictions done for each element of the many
component in a sensible manner (e.g. negative factors cannot be allowed when negative
predictions are not meaningful). Therefore, we assume, without loss of generality, that
all values of θ are positive, with lower (lb) and upper (ub) bound constraints, 0 <
lb < θk < ub. Both lb and ub are free input parameters. We reduce the number of free
parameters to one (α) by defining a symmetric bound region as (lb, up) = (1−α, 1+α).
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Algorithm 2 Reconciling predictions
Input: P (Predictions matrix of size M ×K), nk (number of nearest neighbors), lb, up (lower

and upper bounds)
Output: Pnew (new predictions matrix of size M ×K), θ (vector of corrective coefficients)
1: for k = 1 to K do
2: get nk nearest neighbor for each prediction;
3: Calculate θ using the Least Squares method with Bounds (lb,up) according to eq. 4;
4: Pnew = P · θ
5: end for
6: return Pnew, θ

The process of reconciliation on predictions is explained in Algorithm 2. In the final
step of this algorithm, the prediction matrix for all elements of the many components
is updated using the corrective coefficients θ. A Least Squares method is used to cal-
culate corrective coefficients. To allow robustness against outliers, we suggest using a
nk number of nearest neighbors for estimating θ. We assume that similar trips from the
past have the same behavior as shown in [12]. The new predictions are defined as Pnew.
The algorithm takes into account the information of the predictions for both the many
component elements and the one component predicted from similar instances in Pm,k,
in order to verify eq. 1 on reconciliation.

4 Case Study

To test the methodology explained in Section 3.2, we conduct a series of experiments
using a real dataset that has our desired hierarchical organization of target values. Mea-
suring travel time in public transport systems can produce such a dataset. Being able to
perform accurate Travel Time Prediction (TTP) is an important goal for public transport
companies. On the one hand, travel time prediction of the link between two consecutive
stops (the many components in our model) allows timely informing the roadside users
about the arrival of buses at bus stops (in the rest of this paper we refer to this value as
link TTP). On the other hand, total trip travel time prediction (the one component in
our model) is useful to better schedule drivers’ duty services (in the rest of this paper
we refer to this value as total TTP). [4].

The dataset used in this section is provided by the Sociedade de Transportes Colec-
tivos do Porto (STCP), the main mass public transportation company in Porto, Portugal.
Figure 1 shows the geographical trajectories of bus routes. The experiments described
in the following sections are based on the data collected during a period from January
1st to March 30th of 2010. All selected bus routes operate between 5:30 a.m. to 2:00
a.m. However, we have considered only bus trips starting after 6 a.m.

The collected dataset has multiple nominal and ordinal attributes that make it suit-
able for defining a regression problem. We have selected five features that characterize
each bus trip: (1) WEEKDAY: the day of the week {Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday}; (2) DAYTYPE: the type of the day {holiday, nor-
mal, non working day, weekend holiday}; (3) Bus Day Month: {1,...,31}; (4) Shift ID;
(5) Travel ID.
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Table 1: Characteristics of tested STCP bus routes
Bus Line Origin – Destiny #Stops #Trips

L200 Bolhão – Castelo do Queijo 30 2526
L201 Viso – Aliados 26 2453
L305 Cordoaria – Hospital S. João 22 3126
L401 Bolhão – S. Roque 26 4476
L502 Bolhão – Matosinhos 32 5966
L900 Trindade – S. Odivio 34 219

Fig. 1: Illustration of trajectories of STCP bus routes: a) L200: Bolhão – Castelo do Queijo; b)
L201: Viso – Aliados; c) L305: Cordoaria – Hospital S. João; d) L401: Bolhão – S. Roque; e)
L502: Bolhão – Matosinhos; f) L900: Trindade – S. Odivio.
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We have implemented R4R using the R Software [15] and the lsq linear routine
from Scipy Python library [10]. For the first stage of R4R, as depicted in Algorithm 1
we use a simple multivariate linear regression as a base learning method. We refer to this
base learning method as (Bas). We further split data according to the following format.
A 30 days window length is used for selecting training samples and a 60 days window
length is considered for selecting test samples. In our experiments the parameter α used
for determining the lower and upper bound for the parameter for estimating θ varies
from 0.01 to 0.04, which corresponds to 0.96 - 1.04, minimum and maximum values
that θ can take, respectively.

5 Comparative study

5.1 Can reconciliation be achieved using R4R?

Firstly, using the proposed R4R method we try to answer the following question: is it
possible to use the total trip travel time to improve the link TTPs guaranteeing simul-
taneously a better reconciliation between the sum of the link TTPs and the total TTP?
To answer this question we measure the relative performance improvement achieved by
R4R compared to a multivariate linear regression as the base learning method (denoted
by Bas).

We evaluate the performance in predicting the following metrics (i) link travel time
prediction (LP), the sum of link travel time predictions (SFP) and full trip time predic-
tion (FP). Methods are compared based on Root Mean Square Error (RMSE) as defined
in equation 5.

RMSE =

√√√√ 1

Ntest

Ntest∑
i=1

(ŷi − yi)2 (5)

where yi and ŷi represent the target and predicted bus arrival times, for the ith exam-
ple in the test set, respectively. Ntest is the total number of test samples. For link travel
time prediction indicator, LP, the mean of the RMSE of each bus link is considered.

Results of comparison of R4R and Bas are presented in Figure 2. Please note that
relative gains are presented for the sake of readability of graphs. The duration of travel-
times varies widely. This fact leads to unreadable graphs when actual data is presented.

As seem, R4R outperforms the base multivariate regression model in all cases.
This comparison answers the question posed earlier. R4R improves predictions of the
base regression learning method, guaranteeing simultaneously a better reconciliation
between the sum of the link TTPs and the total trip travel time.

5.2 How does R4R perform against baselines make for time series data?

We continue our experiments by comparing our proposed methodology R4R with the
methods proposed by Hyndman et al. in the recent related works [8], [16], [9] denoted
by (H2011, W2015, and H2016). To compare with these works, we used the available
implementation in the R package [7]. It should be considered that these baseline models
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Fig. 2: Relative improvement of R4R (Res) relative to Baseline (Bas) for mean LP - Link Predic-
tion (red), sum of the link travel time predictions (green) and the full trip time prediction (blue).

are designed for time-series data. Therefore, in order to perform comparisons with these
approaches, we also define a time series problem using this dataset. This is achieved by
representing data in the form of a time series with a resolution of one-hour interval. We
compute the mean link travel time for each hour between 6:00 a.m. to 2:00 a.m of the
next day, i.e. 20 data points in total for each ”bus day”. In the majority of the cases, each
interval has more than one link travel time, that is the reason why we averaged the link
travel times for each hour. Because the dataset has a considerable amount of missing
values, interpolation was used to fill the missing links’ travel times. However, the results
presented in the paper do not take into account the predictions done for intervals with
no data.

The above-mentioned pre-processing tasks that were necessary in order to use the
approaches proposed by Hyndman et al. already suggest that it is viable to propose
methods such as R4R that perform in a more general and flexible regression setting. In-
deed, discretization of data into a time-series format implies the need to do predictions
for intervals instead of point-wise predictions as done in the regression setting. Dis-
cretization also implies the necessity of filling missing data when the intervals have no
data instances. This problem can be prevented by considering larger intervals. However,
larger intervals imply loss of details. Moreover, the regression setting deals naturally
with additional attributes that can partially explain the value of the target attribute.

Figure 3 presents the results of predictions for bus route L305. It should be men-
tioned that we have chosen to show only results for α = 0.01, the parameter that con-
sistently gave us the best performance in all experiments we did. Indeed, the errors
increase with increasing values of α in all experiments we did. The results show very
short differences between the methods under study.

The data provided is not homogeneous. This can adversely affect the performance of
the least-squares method when outlying data is used to find the corrective coefficients θ.
To avoid such problems, in our proposed framework we select the nk number of nearest
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Fig. 3: RMSE for each of the Link Travel Time Predictions of R4R against the methods proposed
in H2011 [8], W2015 [16], H2016 [9] applied to bus route L305. SUM is the RMSE of the
sum of the LTT prediction for the entire trip against the full trip time. This plot shows the results
before the bus starts its journey.

neighbors for each bus trip (also presented in Algorithm 2). Thus, after each link travel
time prediction, it is necessary to recompute the whole process, i.e, to select a new set
of similar bus trips and further find the coefficients using the least-squares method and
update the predictions. Comparing with Hyndman et al. works, this process leads to a
more computationally expensive solution. It is also important to find a suitable value for
nk. During our experiments, we observed that the best results are achieved for nk = 3.
Therefore, all results presented in this paper are based on nk = 3.

Table 2 shows the general results of predictions using this approach for all bus routes
tested using multivariate linear regression as the base learning method (Bas). The re-
sults show that R4R outperforms Bas in all cases. There are a number of cases where
a version of the time series model proposed by Hyndman. et al. perform better than
R4R. These differences can be explained when considering the simple linear regres-
sion algorithm we used as a base learner in Algorithm 1. A linear model cannot find
non-linear relations between features. Technically, the performance of R4R can be im-
proved further as it allows using any other regression method. Furthermore, using extra
features, such as weather conditions, could possibly improve the performance of R4R
even further. However, the methods proposed by Hyndman et. al., cannot benefit from
using extra features.

6 Updating predictions at each bus-stop in a online manner

One of the advantages of the R4R method is that it can improve the predictions for the
same bus route in an online manner. In this section, we present the results of an ad-
ditional experiment to test this quality. In this experiment, whenever a bus arrives at a
bus stop, the link TTP for the remaining bus-stops and the total TTP is computed. The
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reconciliation method is executed again afterward. This experiment cannot be achieved
with Hyndman’s approaches considered earlier. Hyndman’s approaches consider fore-
casts for all groups of time-series at once.

Figure 4 shows the RMSE after the bus arrived at the next stop for bus route 401.
The bus route 401 has 26 stops. This means that R4R will iterate 25 times. As seen, R4R
improves the link TTP at the beginning of the bus route. For a majority of bus stops the
performance is similar after several iterations. In some cases, positive variations on
some bus links are compensated by negative variations on other bus links for the same
iteration.

Fig. 4: RMSE for each link travel time between each iteration of the reconciliation approach for
bus route 401 using nk = 3.

7 Conclusion

In this paper, we study the problem of the reconciliation of predictions in a regression
setting. We presented a two-stage prediction framework for prediction and reconcilia-
tion.
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In order to evaluate the performance and applicability of this method, we conduct
a set of experiments using a real dataset collected from buses in Porto, Portugal. The
results demonstrate that R4R improves the predictions of the base learning method. R4R
is also able to further improve the reconciliation of the link TTPs after each iteration
in an online manner. We also compare the results achieved in a regression setting with
that of a time-series approach. In the case study discussed in this paper, R4R is able to
reduce the error of link TTPs and increase reconciliation.

An important advantage of the R4R method compared to time series variants is
that it provides a flexible framework that can take advantage of any regression model
and additional features accompanying data. Furthermore, R4R is not affected by data
imperfection problems such as missing data, that reduce the applicability of time-series
models that require equally distanced samples.

Our future work aims at testing the R4R framework with different base learning re-
gression models, such as random forest and artificial neural networks, and considering
only one objective function at the time. Finally, we would like to analyze the perfor-
mance and applicability of our methodology on other application domains.
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BUS LINE MODEL LP STP
L200 BAS 277.88 318.11
L200 R4R 277.76 309.82
L200 H2011 51.50 865.38
L200 H2016 44.40 496.71
L200 W2015 37.38 319.22
L201 BAS 41.56 354.11
L201 R4R 41.43 346.52
L201 H2011 42.01 321.80
L201 H2016 41.69 314.09
L201 W2015 41.64 308.85
L305 BAS 48.37 327.69
L305 R4R 48.25 321.81
L305 H2011 48.59 297.27
L305 H2016 48.49 295.97
L305 W2015 48.40 296.41
L401 BAS 29.26 239.11
L401 R4R 29.17 234.29
L401 H2011 26.87 193.29
L401 H2016 26.80 192.65
L401 W2015 26.76 192.38
L502 BAS 42.62 385.34
L502 R4R 42.50 375.75
L502 H2011 47.27 264.14
L502 H2016 46.69 270.02
L502 W2015 46.82 287.71
L900 BAS 58.60 401.89
L900 R4R 58.60 395.79
L900 H2011 48.20 432.25
L900 H2016 48.24 420.58
L900 W2015 48.08 403.34

Table 2: Overall mean RMSE for each model, H2011 [8], W2015 [16], H2016 [9] and the new
proposed approach R4R. LP - mean of the RMSE of Link Predictions, STP - RMSE of the sum
of the LTT prediction for the entire trip against the full trip time.


